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Abstract— Many robotic tasks rely on physical interactions
with the task environment. Sensing when and where links
make physical contacts can be crucial in several applications,
including but not limited to grasping, locomotion, collaborative
robotics and navigation. While sensorizing robot end effectors
with intrinsic tactile devices is a logical approach, current
and accessible options are often expensive or require invasive
modifications. This paper presents a prototype method of both
sensing and localizing contacts along a rigid link that can be
readily incorporated into existing machines. The mechanism is
lightweight and low-cost, and functions by actively providing
an oscillatory mechanical actuation signal to a rigid link, whose
mechanical response is measured with an inertial device and
is used to localize touch at one of five designated contact
points. Classification is performed with supervised methods
using transient behavior and spectral features. Evaluation
is conducted with five-fold cross validation, and preliminary
results indicate promising performance in localizing the point
of contact on the rigid link with accuracy of over 97%.

Index Terms— contact localization; active sensing; sensors;
Mel-frequency cepstrum; machine learning;

I. INTRODUCTION

A. Background

Robots capable of dexterous manipulation and other physi-
cal interactions like grasping can be deployed in unstructured
environments like hospitals [1], [2], service industries, search
and rescue [3], restaurants, and even space [4] with positive
outcomes. Oftentimes interaction objects may be of high-
value or delicate in nature, e.g. in robotic surgery [5]–[7]
or human-robot interaction [8]. In such scenarios, it is of
utmost importance that the robot minimizes risk of physical
damage to delicate structures or assets. To do so, a robot
should be aware of the physical contacts it makes with the
environment, handle fragile objects, as well as be able to
navigate through unknown or occluded spaces.

To model a 3D task space, a robot typically utilises several
perceptual modalities such as vision, touch, or sound. While
cameras and lidars are often used to gather ranging informa-
tion from large areas, tactile sensors can be instrumental in
reducing uncertainty and gaining additional information at a
finer scale from the physical interaction between objects and
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an end effector [9]. Tactile robotic sensors attempt to repli-
cate human touch capabilities, including haptic perception of
textures and shape, via the detection of minute contact forces
between a sensor and an external surface [10]. The tactile
sensing technologies, whether using coupled or non-coupled
electrical and mechanical transduction methodologies, strug-
gle with high costs and high density actuator configurations
depleting space efficiency [11]–[13]. The robotic ability to
detect minor contact events at various locations along a
serial linkage structure is often conducted through expensive
pressure or temperature triggered systems [14] creating the
desire for a low-cost and non-intrusive alternative sensor.
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Fig. 1. Contact localization hardware setup.

Contact localization, in some vision [15] and tactile
[16] based approaches, has sought to increase accuracy for
grasping mechanisms between robotic end effectors and
compact structures. With extended applications in human-
machine assembly processes and locomotion, perception and
localization of contact occurrences is needed. This work
introduces an approach that is readily incorporated into rigid
links, and is operated by actively vibrating and measuring
the mechanical response to distinguish six different contact
states, as shown in Fig. 1. The workflow is shown in Fig. 2.

B. Related Works

1) Contact Localization: Molchanov et al. [16] estimated
environmental impacts along a robotic surface through a
biomimetic tactile sensor (BioTac) with a data analysis driven
approach of regression and classification methodology of
clustered pressure frequencies in the time domain. Similarly,
McMahan et al. [17] distributed multiple accelerometers
along a Willow Garage PR2 for accurate contact event
location via vibration detection. Prior research utilizing an
excited single link elastic contact model demonstrated the
sensitivity of contact force detection across said system as
compared to the frequency of static behavior [18]. The pro-
cess of discerning a tactile event with respect to a robot and
the localization of such an event is prevalent independently
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Fig. 2. Experimental workflow. The ERM actively actuates the rigid link, while contacts are made at appropriate locations between R1 − R5, R0 is
untouched. Inertial data is collected via the IMU. These data are then processed in two pathways, AMP and ARM. The former uses manually selected
features from transient behavior and spectral characteristics, and trains through a multi-class perceptron network. The latter uses Mels-frequency cepstral
features, and generates a 98-length sequence of features per sample. These sequences are then used to train a bilateral long-short-term-memory network.

in previous rigid contact sensors. Monte Carlo approaches
[19] and force propogation [20] can be used when sufficient
external forces are present and the manipulator is equiped
with torque sensors. Soft contact sensor arrays show promise
in soft-robotics applications, yet suffer from hysteresis and
nonlinearities [21]–[23].

2) Hardware Components: Recent accelerometer-based
applications have explored environmental range-free position
localization, as implemented through a H48C mounted on a
Boe-Bot Robot Kit, and on-body device, or smartphone, po-
sitioning via microelectromechanical systems (MEMS) [24],
[25]. Bulletti et al. [26] employed triaxial accelerometers for
the detection of shallow landmines via the excitation of the
soil-mine system with the production of a consistent sine
wave by an acoustic source. While highly sensitive force-
pressure sensors excel in terms of performance granularity,
the cost of fabrication of piezoelectric arrays, including
complex graphene-transfer configurations [27], diminishes
the accessibility of such technology [28]. Accelerometers
are an inexpensive and non-intrusive alternative method for
varied data extraction, notably through a raw displacement
lens and within the frequency domain for position and
contact localization.

3) Signal Processing in Tactile Sensing: Göger et al
[29] developed an anthropomorphic robot hand that utilized
polyvinylidene fluoride (PVDF) sensors to classify contact
patterns and slip detection for object manipulation and grasp-
ing. The short term Fourier transformation (STFT) generated
input features for classification via principle component
analysis (PCA). Similarly, Yi et al. [30] leveraged several
classification algorithms such as support vectors (SVM) and
k-nearest neighbors (kNN) to discriminate between various
rough tactile sensors. Categorizing acceleration-based data
for the classification of contact points often relies on the
extraction of elements from the frequency spectrum and the
subsequent correlation coefficients [25], [26]. Acceleration

signals are also used to classify surface textures. Strese
et al. [31] utilized such a method, coupled with various
classifiers such as Gaussian Mixture Model (GMM) and
Hidden-Markov-Models (HMM) to recognize texture.

4) Applications in Robotic Contact Localization: Tactile
sensors, with an acute awareness of shifts in pressure and
vibration, reproduce minute contextual details of a robotic
environment for kinematic state observations [12]. In many
commercial devices, the juxtaposition of binary tactile sen-
sors with robotic joints provides information on external
object intrusion with a robotic digit [32]. Locomotion in
uncertain environmental conditions complicates the execu-
tion of maneuvers when rapid adaptations of motion are
desired. Grimminger et al. [33] proposed an open-sourced
foot sensor for a torque-controlled quadruped robot, gauging
contact location in all directions for necessary adjustments.
Human-robot interactions must avoid unexpected collisions
for controller safety, necessitating a distinction between unin-
tentional and intentional contact points, through observations
of the frequency domain and response of Cartesian com-
pliance controllers [34]. Similarly, the risk of fallout from
machinery fault vibrations and assembly processes requires
the discernment of mechanical fault location for appropriate
replacement by analyzing vibrational responses [35], [36].

C. Contributions

This paper extends the granularity of contact localization
using the authors’ prior hardware model [37], an inexpensive
rigid link model design that vibrates via an eccentric rotating
mass motor (ERM). The method was inspired by a robust
contact sensor manufactured by Backus et al. [18], [38]
which discerned changes in the resonant frequency of a
two link digit oscillated by a contact force. This study
extends classification for increased contact points and an
updated signal processing system. To the best of the authors’
knowledge, this work is the first to simultaneously present:
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Fig. 3. Aggregate FFTs from all six contact classes R0 − R5. Three bands were empirically selected for feature extraction, and are shown as band 0
([0,120]Hz), band 1 ([500,550]Hz), and band 2 ([825,925]Hz).

i) an inexpensive contact sensor constructed with off-the-
shelf components that can be incorporated into robots
with rigid links;

ii) contact localization on a rigid link based on active
oscillation with an achieved granularity of distinction
between non-contact and contact events approximately
2cm apart;

iii) a supervised deep learning network to distinguish var-
ious points of contact (among six classes: five contact
locations and untouched) with accuracy over 98%.

II. METHODS

The overall system workflow is depicted in Fig. 2. The
procedural methodology for this research consisted of three
components - system hardware (Section II-A); data collection
(Section II-B); signal analysis (Section II-C) which also
involves feature extraction and contact location classification.

A. System Hardware

A rigid link of 10.5cm length was implemented using 1/4
inch UNC 20 threaded rod of ASTM A591 Zinc Coated
Steel. This rigid link was affixed on a 3D printed PLA
mount, which also housed the ERM. An ADXL 345 3-axis
accelerometer was fixed to the terminal end of the rod, which
was used to sample the mechanical response of the link with
a sampling frequency of 3200Hz. The contact probe was
manufactured by attaching a 5/8 inch rubber ball on a 3D
printed arm and it was controlled by a standard precision
MG995 metal gear servo. See [37] for more details.

TABLE I
CONTACT LOCATIONS - D IS DISTANCE TO TERMINAL END

Contact Point R1 R2 R3 R4 R5

D[mm] 92.4 71.8 51.2 30.6 10.0

As shown in Table I, five points of contact were designated
equally spaced out, with R5 at the proximal end nearest the
ERM, and R1 near the terminal and accelerometer. The total
length of the rod is approximately 105mm, including a 10mm
buffer applied to both ends of the rigid link prior to the
division of the five contact regions spaced 20.6mm apart.

B. Data Collection

The contact probe and the ERM actuator were automated
using a Raspberry Pi to collect 150 time series samples drawn
from each of the following six classes: (1) R0, untouched,
and contact at regions (2) R1 (3) R2 (4) R3 (5) R4 (6) R5.

In each time series sample, the mechanical system is first
at rest. The contact probe was then positioned via a servo
mechanism corresponding to contact state (one R0 − R5

classes). The ERM was actuated for one second with no
load and constant current. During this time, the accelerometer
measured the 3-axis acceleration of the terminal end of the
link at 3200 Hz. The contact probe was lifted while dynamics
were allowed to attenuate for 180 seconds. For each class,
this data collection process was repeated for 150 cycles, with
an aggregate database of 900 one-second time series samples.



C. Feature Spaces

Two contact localization algorithms were proposed in this
work - (1) AMP : Multiclass Perceptron - with manually se-
lected features, F and (2) ARM : Recurrent Neural Network -
with Mel-frequency cepstrum features C. The feature space
constructions for F and C are described in the following
subsections.

1) Manually Selected Features F : Manually selected
features were determined by observations from data in both
transient behavior and the frequency domain. i.e. the spec-
trum of the acceleration information in the vertical direction
computed via the fast Fourier transformation (FFT).

Figure 3 depicts aggregate FFTs for all six classes with
shaded confidence interval of one standard deviation. Mitra
et. al. [37] demonstrated preliminary classification capability
based on the peak-frequency and peak-prominence in the 0-
100Hz band. Figure 3 shows that additional bands in the
acceleration power spectra may hold discriminatory power
between the classes. To that end, the following manually
selected features were chosen:

F =
[
θ ω0 π0 ω1 π1 ω2 π2

]T
(1)

where θ is the inverse tangent of ratio of RMS vertical
and horizontal acceleration respectively, ωi denotes peak
frequency within band i, and πi is peak prominence in
band i. Bands 0, 1 and 2 include [0, 120] Hz, [500-550]
Hz, and [825-925] Hz respectively (these were empirically
determined from Fig. 3). Prominence of peak is defined as
the peak value minus either the left or right trough value,
whichever is greater.

Prior to classification, the feature space was pre-processed
and normalized along all feature dimensions via Z-score
normalization. Figure 4 shows the distribution of each feature
stratified by contact region.

Fig. 4. F Feature Space - bean plots show distributions of feature values
for each contact location class. These manually selected features originate
from both transient behavior and FFT based parameters as described by (1).
Tick marks in the bean plots represent the means of the feature distributions.

2) Mel-Frequency Cepstrum Features, C: The mel-
frequency cepstral coefficient (MFCC) were primarily de-
veloped for audio signal recognition. Recently, this feature

extraction method has been used for various purposes includ-
ing hand gesture [39], and surface texture recognition [31].
For the purpose of this experiment, MFCC was deployed to
extract 14 coefficients (as per default in MATLAB Audio
Toolbox™) from each time series sample. The implemented
algorithm segmented the time signal into overlapping frames,
with 30ms frame width and 10ms overlap - the maximum
window size using STFT for MFCC. The MFCC extraction
was calculated as in [40]. Specifically, the signal within the
frame was examined in the frequency domain using STFT

X(k) =

N−1∑
n=0

x(n)e
−jnk

N 2π; 0 ≤ k ≤ N − 1 (2)

The Fourier transformed signal was mapped from physical
frequency to mel frequency as

fmel = 2595 log10

(
1 +

f

700

)
(3)

followed by a series of band-pass filters (mel-filter bank). The
Mel spectrum was then obtained by multiplying the power
spectrum by each of the mel weighting filters

s(m) =

N−1∑
k=0

[
|X(k)|2Hm(k)

]
; 0 < m < M − 1 (4)

, where Hm is the mth weighting filter and M is the
total number of filters used. In this experiment, the Audio
Toolbox™ default of 40 triangular filters were used. Finally,
the coefficients were calculated by applying the Discrete
Cosine Transformation, as in

C(n) =

M−1∑
m=0

log10(s(m)) cos

(
πn(m− 0.5)

M

)
(5)

The first 14 coefficients constitute the ARM feature space,
i.e. 0 ≤ n ≤ 13 in (5).

Fig. 5. A sample sequence of 98 MFCC coefficients generated over the one
second acceleration time series sample for a contact at R3. These features
arranged in a sequence are amenable to classification by recurrent networks.

With window size of 30ms and 10ms of overlap, each one
second time series sample generates 98 sequential sets of the
14 features in C. Figure 5 shows an example of extracted
MFCC features from a single time series.
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Fig. 6. Confusion matrices depicting contact location classification results from the 5-fold evaluation using AMP (left) and ARM (right) respectively.

Prior to classification, the data were pre-processed and
normalized along all feature dimensions via Z-score nor-
malization. Figure 7 depicts the distribution of each feature
stratified by contact region.

Fig. 7. C Feature Space - bean plots show distributions of feature values
for each contact location class. The 14 features are the first 14 MFCC
coefficients as calculated with (2-5). Tick marks in the bean plots represent
the means of the feature distributions.

D. Classifiers

Both F and C data-sets were uniformly segmented within
the six classes into a split of 80% training and 20% testing
data. The training sets were then used to train two different
types of supervised agents, AMP : Multi-class Perceptron for
F and ARM : Recurrent Neural Network for C. Perceptron
networks are well suited for single feature-vector classifica-
tion. On the other hand, the Mels-frequency cepstral features
generated sequences of feature vectors, which are amenable
to recurrent neural networks.

In AMP , the seven features in F served as inputs to
a single layer of 100 perceptrons using scaled conjugate
gradient backpropogation to optimize cross entropy. This
network was used to learn the six contact class outputs,
R0 −R5. For ARM , the sequences of 98 C feature vectors
per sample were used to train a bidirectional long short
term memory recurrent neural network with 128 hidden
units, sigmoid gate activation and hyperbolic tangent state
activation.

III. RESULTS AND DISCUSSION

The classification performances respectively using AMP

and ARM were analyzed with 5-fold cross validation using
180 test data samples (20% of the dataset) per fold. The
overall results are presented as two confusion matrices in
Fig 6. The precision, recall, accuracy and F1-score at each
contact point (R0 - R5) were evaluated for both classifiers
as tabulated in Tables II and III.

TABLE II
MULTI-CLASS PERCEPTRON CLASSIFIER (AMP ) PERFORMANCE

Class Precision Recall Accuracy F1-score

R0 1.0 1.0 1.0 1.0

R1 0.9071 0.8467 0.9600 0.8759

R2 0.9130 0.9800 0.9811 0.9453

R3 0.9338 0.9400 0.9789 0.9369

R4 0.9867 0.9867 0.9956 0.9867

R5 0.9932 0.9800 0.9956 0.9866

The classification performances with no contact (R0) are
highlighted light orange in tables and the best performed
class under each evaluation metric is highlighted in green .
In summary, an overall accuracy of 95.56% is achieved using
AMP and 97.11% using ARM .

TABLE III
BI-LTSM CLASSIFIER (ARM ) PERFORMANCE

Class Precision Recall Accuracy F1-score

R0 1.0 1.0 1.0 1.0

R1 0.9789 0.9267 0.9844 0.9521

R2 0.9730 0.9600 0.9889 0.9664

R3 0.9018 0.9800 0.9789 0.9393

R4 0.9865 0.9733 0.9933 0.9799

R5 0.9933 0.9867 0.9967 0.9900



A. Analysis of Results

Several observations can be drawn from these results.
From the confusion matrices, results suggest that:

- touched classes, that is R1 − R5, are readily distin-
guished from untouched R0;

- in general, contacts furthest from the ERM were more
difficult to classify;

- both AMP and ARM misclassifications tend to predict
contact more proximal than true contact location;

- distinguishing contact in region class R1 is particularly
challenging for AMP , resulting in a total of 23 false
negatives and 13 false positives;

- both AMP and ARM exhibited the most false positives
classifying region R1 contact. AMP also showed the
most false negatives for R1, while ARM’s most false
negatives were from the R3 class;

From Tables II and III, results show that:
- ARM classified contacts at point R5 consistently better

than other classes, whereas AMP classified contacts at
R4, R5 better than other classes;

- ARM did not exhibit any metric below 0.9 for any class,
while AMP had two;

- precision for R5 is the greatest amongst touched classes
for both methods, suggesting that R5 is the most robust
in-contact class to classify.

B. Future Directions

This work presents a low-cost, non-intrusive method of
detecting contact locations at a higher granularity than the
authors’ prior work. With that said, there is room for further
improvement to increase applicability. Future work may
include:

- Actuation modality: the current prototype uses a general
purpose ERM, which is unable to modulate its ampli-
tude and frequency independently. For the purpose of
this experiment, 1.5V is applied to the ERM with no
changing load, which oscillates the rigid link at 170
Hz, without modulation specificity;

- For the hand-picked features, peak frequency and its
prominence at three different bands are utilized. More
experiments can be conducted at various bands to
evaluate the performance. Similarly, the parameters of
MFCC features can be changed and tested to improve
performance;

- Expansion of the data-set is also a viable option to ex-
tend the capabilities of the sensor. Only acceleration in
the z-axis is utilized. By leveraging more dimensions of
acceleration, feature spaces can possibly be more unique
and discriminatory, helping classify more regions;

- The orientation and inherent physical features of the
rigid link may be adjusted for a more in-depth preview
of contact methodologies in dynamic structures. A robot
end effector may frequently be in motion, so robot state
parameters may be incorporated for more training;

- As it stands, the rod is symmetrical radially along
the axial direction, so while region of contact can be

distinguished, it is not precise enough to determine
radially contact position. A radially asymmetric rod
might be used to obtain directionality of contact.

IV. CONCLUSION

The baseline approach in the authors’ prior work [37]
considered a reduced feature space of [ω0, π0] from F and
with a classification accuracy of 90%. The previous approach
considered the unsupervised method of Gaussian Mixture
Models and a simple supervised logistic regression. With
more contact locations and features, the proposed method is
promising, as it presents more complexity and discrimination
at higher granularity of localization.

This study presents a novel low-cost system and two
contact localization approaches - AMP and ARM that are
able to distinguish six distinct contact states (five contact
locations and untouched) which can be incorporated in rigid
links with minimal effort. AMP utilized manually selected
features from transient behavior and spectral characteris-
tics to train a multi-class perceptron network. ARM used
sequences of Mel-frequency cepstral features as a feature
space and a bi-directional LSTM. An approximate spacing
of two centimeters between contact locations was used in
this work. Both proposed approaches achieve an outstanding
classification accuracy of more than 95%, and a 100%
accuracy for detecting events of contact (R0 versus R1−5).
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