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Abstract— This paper presents an affordable stylus device
with embedded inertial sensing for measuring dynamic kine-
matic data from handwritten signatures for the purposes of user
identification. A set of spatiotemporal features are proposed
for use in a simple multilayer perceptron classifier, and a brief
user study is conducted for evaluation with promising results.
In general, user authentication is a key component of securing
digital information in cyber-physical systems. Current methods
span alphanumeric passwords, multi-factor authentication, and
biometric techniques, with each providing trade-offs between
convenience, flexibility and security. This work presents a device
that marries a kinematic trajectory unique to each person
(handwritten signature) with digital authentication via a stylus
type device. Handwritten signatures are ubiquitous for authen-
ticating paperwork, credit card transactions, check deposits and
ballot boxes to name a few. Oftentimes, handwritten signatures
are executed and treated perfunctorily as a matter of routine
with no genuine intention towards security or authentication.
When authentication is requested of handwritten signatures,
most often the only recourse is expert visual examination of
the written pen strokes. While some methods have investigated
the use of measuring temporal, inertial data from handwritten
signatures as a mode of authentication, these were executed
with either expensive haptic robotic devices or prototype,
externally mounted sensors. This work enables dynamic inertial
authentication methods of handwritten signatures in a low cost,
seamless embedded stylus device.

Index Terms— embedded and cyber-physical systems, bio-
metrics, authentication, handwritten signatures, security and
privacy

I. INTRODUCTION

Modern day interactions are growing more and more
reliant on technology and digital information, with many
conveniences, tasks, and businesses mediated through com-
puter devices and cloud-based storage. With this proliferation
of technology in society comes a growing concern for proper
and reliable security and authentication measures, as the
use of technology can outpace once reliable methods for
security. Alphanumeric passwords, numeric combinations or
even handwritten signatures do not hold the same weight or
robustness in today’s cyber-connected world. Cybersecurity
itself is a growing industry due to the skill and ability of
adversarial attackers to steal and gain access to private,
delicate or highly valuable information.
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A. Related Work

Currently, digital user-interfaced systems typically re-
quire some method of authentication in order to verify
the human user. Common methods include alphanumeric
passwords, personal information numbers (PIN), one-time
passwords (OTP), Multi-Factor Authentication (MFA), facial
identification, and fingerprint authentication to name a few.
Alphanumeric passwords and PINs are simple and easily
reset, but they can be brute-force cracked. OTPs can be
inconvenient, and are subject to attack without two-way
authentication. Multi-factor authentication requires network
connectivity and at least one additional device on-hand
to complete verification. Some biometric systems can be
unreliable or spoofed (e.g. face or fingerprint recognition),
and are not easily reset or reconfigured. With a growing need
for more unique and secure ways of user authentication, this
project aims to leverage the unique kinematic data in and
precedent of handwritten signatures to capture an additional
digital security measure. The method is not burdensome
(most people already have trained a unique handwritten
signature as a formality), and sensorizing a stylus with digital
inertial sensors can be achieved in a seamless, embedded
fashion.

Current methods of handwriting recognition and authen-
tication is an extremely manual and expensive undertaking.
The prevailing methodology relies on “handwriting experts”,
who look for visual signs of feature recognition in the
final handwritten signature. These handwriting experts can
demand a high monetary cost for services, are hard to train,
and the observed utility of their expertise over novices are
not entirely confirmed [1]. Signatures are unique to every
individual just like handwriting [2], [3]. The way a person
holds the pen, the angle and orientation they write with, the
speed and pressure used, and sizing and formation of letters
is different for each unique individual. By taking advantage
of these features, a classification system can be designed to
authenticate its user [4], [5]. In this work, manually selected,
interpretable features are developed and evaluated.

In a similar work, tablet devices were used to digitize
the final written output to intelligently automate handwriting
quality feedback [6]. While the resultant signature was
digitized, the method did not incorporate the kinematics of
the stylus in its feature space, and authentication was not
implemented. Other groups, also motivated by handwriting
development, sensorized the stylus to quantify performance
[7]. The way a person holds a stylus device has been inves-
tigated for use in teleoperated systems [8], [9]. Using hand-



Fig. 1: Simple overview of stylus device with embedded IMU sensor authentication. Surface mount IMU devices are
conspicuously implanted axially along the center of the writing stylus, which are used to collect kinematic data. Manual
features are then extracted and used for both training and classification of user via a multilayer perceptron network.

writing stylus kinematics has also been applied to detection
of Alzheimer’s and Parkinson’s disease [10]–[13], user-input
devices for written character recognition [14], [15], and robot
training [16]. Intelligent handwriting verification methods
have been explored for post-processing of handwriting using
image processing and comparison algorithms [17]. Sae et
al. analyzed the dynamics of finger-written signatures on a
touch screen mobile devices [18]. Early methods of classi-
fication included simple match-making algorithms [19], and
more recent methods incorporate hidden markov models and
recurrent networks [20]. Kurowski et al. used an embedded
pen and tablet system with a single inertial measurement
unit (IMU) with acceleration and angular velocity, signature
shape capture, and pen pressure [5]. A neural network was
then used to train classification via a triplet loss function.

B. Contributions

To the best of the authors’ knowledge, this work is the
first to introduce simultaneously a single, low-cost embedded
biometric handwritten signature stylus device that:

- incorporates dual accelerometers to measure kinematic
information at two points along the center axis of the
pen;

- implements an automated coordinate frame registration
to accommodate grip symmetry of cylindrical stylus;

- introduces novel interpretable features for signature
classification based on accelerometer data alone;

- evaluates via a preliminary user study the validity of the
low-cost system and selected features for authentication.

II. DESIGN

Previous work investigated the use of attaching commodity
IMU sensors to existing writing utensils [4]. This work seeks
to incorporate inertial sensing into a streamlined form factor
writing stylus, and the overall workflow is depicted in Fig.
1. The device enclosure is prototyped with readily available

rapid prototyping (extrusion 3D printing). To accommodate
rotational symmetry, an orientation normalization procedure
is performed. Additionally, manual features are extracted and
used to train and validate the authentication via a user study.

A. Stylus Enclosure Specifications

The prototype enclosure consisted of two halves split
down the length of the stylus, as shown in Fig. 2, and
both halves were printed with polylactic acid filament and
polyvinyl alcohol supports using the Ultimaker S5 printer.
The stylus is 151 mm in length and 13 mm in diameter (to
accommodate the profile of the surface mount IMU sensors
while maintaining structural integrity).

Fig. 2: Stylus enclosure prototype consisted of two halves.
Spring clips are designed to easily secure the two halves
together and disassemble when needed.

The print was completed using 1.2 mm layer height, 220◦C
print temperature, and print speed of 50 mm per second. Note
that in addition to clips for securing the two halves together,
the design incorporates sections for securing a truncated pen
refill at the tip, two wells to hold the surface mount IMUs,
and a terminal end pin connector slot to output inertial
signals. The pin connector used was a standard MD-90
connector. The dimensions of these components are detailed
in Fig. 3.
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Fig. 3: Dimensions of stylus enclosure. Spatial dimensions for callouts are in millimeters.

B. Kinematic Sensor and Interface

An IMU is a combination of multiple inertial measure-
ment devices such as gyroscopes and accelerometers. These
devices can also equip magnetometers, providing much more
detail in orientation sensing. Gyroscopes measure orientation
and angular acceleration, and can be found in navigation
and guidance systems. Smaller form factor via microelec-
tromechanical systems (MEMs) gyroscopes are also found
in commercial devices like smartphones. However, reliable
gyroscopes can be expensive or otherwise prohibitively large,
which contradict the low-cost and seamless goal of this work.

In contrast, commodity low-profile surface mount ac-
celerometers can be obtained off-the-shelf at low cost. The 3-
axis MEMs based ADXL-357 was chosen for its slim profile
(14-LCC package, 6 mm × 5.6 mm × 2.2 mm footprint)
and affordability. The sensor can measure linear acceleration,
and requires minimal external circuitry to implement. Key
specifications for the ADXL-357 are summarized in Table I.

Acceleration Range ±10g, ±20g, ±40g

Sensitivity 12800 (±10g) ∼51200 (±40g)

Bandwidth 1Hz ∼1kHz

Output Type I2C, SPI

Features Adjustable Bandwidth, Selectable Scale

TABLE I: Key Specifications for ADXL-357

Electrical connections to the accelerometers, pin connectors
and discrete surface mount capacitors were made via solder-
ing and 30 gauge solid wire. All internal electronics fit within
the enclosure, and data and power are tethered to a Raspberry
Pi microcontroller. Data transmission was established using
Serial Peripheral Interface at a sampling rate of 1kHz. The
simple sensor suite is embedded in the enclosure and easily
assembled, as shown in Fig. 4.

a) electrical connections, opened

b) enclosed and tethered

Fig. 4: Sensorized stylus with electrical components shown.

Figure 5 shows typical compensated 3-axis accelerometer
data from a handwritten signature.

Fig. 5: Compensated 3-axis accelerometer data from pen-tip
captured from a handwritten signature that lasted just under
three seconds. Since two accelerometers are embedded in the
device, a total of six traces are captured per signature.



III. METHODS

A. Orientation Normalization

Since the stylus exhibits rotational symmetry about the
length of the device, no standard coordinate frame is guaran-
teed between or within users. In order to ascertain a standard
frame, the direction of acceleration due to gravity was used
(g). After kinematic data of a signature is acquired, the
dynamic acceleration data were compensated such that the
mean 3DOF acceleration over the time series was assigned
as an approximation of g. In order to perform this normaliza-
tion, the rotation matrix (U) was computed for each captured
signature and mean acceleration (â).

v = −
â⊥g

||â⊥g||
(1)

G =


â · g −||v1g|| 0

||â× g|| â · g 0

0 0 1

 (2)

F =
[
â v g× â

]
(3)

U = F ·G · F−1 (4)

This methods assumes that a person’s grip local to the stylus
does not change during any single signature, as well as
relative within-user kinematic consistency of signature.

B. Feature Selection

Interpretable features of authentication were sought. While
standard spectral features were considered (popular in
speaker-recognition, surface texture recognition, and contact
localization [21]–[23]), time-series kinetic features afford
more direct interpretability. 11 manual features were de-
signed to characterize orientation, energy distribution in
different spatial axes, and energy distribution temporally for
each accelerometer

F =



α
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(5)

with parameters defined as

α = arccos (â · g) (6)

rrms =

√
1

N

∑
t

a2
x(t) + a2

y(t) + a2
z(t) (7)

θi−j = arctan
(
airms

ajrms

)
(8)

τ̂i =
1

Nτ

∑
t

Ei(t)t (9)

σi =
1

Nτ

∑
t

Ei(t)t
2 − τ̂i (10)

Here, N is number of data points in the time-series of
sample acceleration. Nτ is the normalization factor, namely
Nτ =

∑
t Ei(t). Ei(t) is a measure of energy, where

Ei(t) = a2
i (t).

With two accelerometers embedded and 11 features each,
the total feature vector for any time instant is length 22.
These features are based on kinematic and kinetic character-
istics of the handwritten signature. The α feature describes
the pen kinematic orientation. Mechanical energy measured
is also of interest, and rrms encodes a measure of energy
at the two accelerometer locations, while θi−j describes the
relative ratios distributed along the spatial axes. Finally, τ̂i
describe the mean temporal distribution of energy, while σi

is a measure of the variance of energy in time.

C. Classification

A multilayer perceptron neural network was trained
with three hidden layer with 500, 200, and 50 per-
ceptrons in each layer respectively. This model opti-
mized the log-loss function using Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno. Prior to classification, the
data were pre-processed and normalized along all feature
dimensions via Z-score normalization of the signature data.

IV. EXPERIMENTAL PROCEDURE

All studies with human subjects were approved by the
Trinity College Institutional Review Board. A total of 10
voluntary subjects were recruited via word of mouth.

A. Authentic Signatures

In this preliminary user study, two separate users’ sig-
natures served as authentication targets. The two subjects
were designated Subject 0 and Subject 1, were right-handed
and 22 years old. Both were instructed to complete their
handwritten signature a total of 212 times with the embedded
stylus, with kinematic data from each signature being logged
per the aforementioned methods. Signatures were filled in a
tabular form to ensure consistent physical scale. The users
were allowed to take breaks in between signatures as they
saw fit to avoid fatigue. Over the course of the 212 authentic
signatures, Subject 0’s signature duration was consistently
just under three seconds, while Subject 1’s signature was
completed repeatably in just under five seconds. Figure 6
shows the graphical output of the two target authentication
signatures.



(a) Subject 0                         (b) Subject 1

Fig. 6: Graphical output of (a) Subject 0 and (b) Subject 1
handwritten signature using the stylus device. The signature
duration was consistently about three and five seconds for
Subject 0 and Subject 1 respectively.

B. Forged Signatures

To complete the dataset, the remaining eight volunteers
were tasked with forging the signatures of Subject 0 and
Subject 1. The subjects were all right-handed and between
the ages of 18 and 23 years old. The subjects were informed
that they could stop the experiment at any time. A brief
introduction to the forgery task included:

- an introduction to the embedded device whose user
model is similar to tethered ballpoint pens at post offices
and banks;

- for each signature class, a copy (to scale) of the authen-
tic signature graphical output (see Fig. 6);

- a description of the time duration the authentic signature
(about three seconds for Subject 0, and about five
seconds for Subject 1);

- time for the forger to practice with the pen to forge
the target signature (20 minutes or whenever satisfied,
whichever came first).

In all cases, the subjects were satisfied with training prior to
the 20 minute practice threshold.

Fig. 7: Above the tabular forgery space, the authentic sig-
nature is displayed. Each row corresponds to a three word
sequence of two forgeries followed by a random word.

After training, the eight forgery subjects were asked to create
forged data by completing, for both Subject 0 and Subject
1 signatures, handwritten forgeries as well as random words
in a sequence of two forgery attempts followed by a random
word of their choosing - the random words were requested
to expand the training space for negatives. Subjects were
allowed to take a break or end the experiment whenever they

wished. This sequence was repeated 15 times for each forger
per signature. Figure 7 shows a glimpse of the forgery task.

For both Subject 0 and Subject 1 signatures, a database is
collected that includes accelerometer time series for

i) 212 handwritten positive (authentic) signatures;
ii) 343 handwritten negative (forged) signatures, consisting

of:
- 238 forged replicas of authentic signature;
- 105 random words.

Each class of signature thus includes a total of 555 collected
signatures as a dataset.

C. Training and Evaluation

To train and evaluate the authentication method, an 80-20
split was heuristically determined. For each signature, the
dataset of 555 samples was partitioned randomly into five
disjoint folds (110 samples in the first four, 115 in the fifth).
A uniform distribution of each class within each fold was
attempted (42 authentic, 47 forged, and 21 random words
for the first four folds, 44, 50 and 21 respectively for the
fifth).

In each of five trials per signature, a single fold was used
as the testing set while the remaining folds were utilized
for training the network. Each of the five folds served as
the testing set once in the evaluation. In this way, no test
data were used for training the model on which that data
were evaluated, yet all data could be tested. The same fold
partitioning technique was applied to both Subject 0 and
Subject 1 signatures in all evaluations and experiments.

V. RESULTS

Figure 8 shows confusion matrices that summarizes the
cumulative binary classification results from the user study
across all five folds. Furthermore, receiver operating char-
acteristic curves for both signatures and for each fold are
shown in Fig. 9, with areas-under-the-curve (AUC) for each
fold shown in Table II.

Fig. 8: Cumulative confusion matrices for binary authentica-
tion of signatures with performance metrics.
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Fig. 9: Receiver operating characteristics for each fold in
each signature authentication task.

Fold 1 2 3 4 5

Subject 0 0.9919 0.9818 0.9926 0.9930 0.9465

Subject 1 0.9678 0.9758 0.9814 0.9373 0.9481

TABLE II: Receiver Operating Characteristic Areas-Under-
the-Curve

VI. CONCLUSION

This work presented a low cost sensorized writing stylus
system to authenticate handwritten signatures. Novel, man-
ually crafted spatiotemporal features were introduced, and
a gravity compensation method was proposed to register
kinematic data to the same global frame. In the user study, the
proposed method showed robustness to signature variability
of individual users, with over 93% accuracy and 94.2% speci-
ficity. Furthermore, the evaluation results also demonstrated
an outstanding performance in receiver operating character-
istic curves AUC ranging between 0.9373 and 0.9926 across
subjects and folds. Compared to common password models,
such as alphanumeric systems, this authentication method
relies on the user’s signature, which introduces complexity
that is difficult to replicate or spoof, and simultaneously
leverages an individual’s years of practice and familiarity
with their own personal handwritten signature. This work
demonstrates that using inertial measurements of signature
for signature authentication can be cost-effective, secure,
robust, and embedded in a streamline package.
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