

BIOMETRIC SIGNATURE AUTHENTICATION WITH LOW-COST EMBEDDED STYLUS

Divas Subedi¹, Digesh Chitrakar¹, Isabella Yung¹, Yicheng Zhu¹,
Yun-Hsuan Su², Kevin Huang¹

¹Trinity College, Department of Engineering, 300 Summit St, Hartford, CT 06106

²Mount Holyoke College, Department of Computer Science, 50 College St, South Hadley, MA 01075

MOTIVATION

- Current authentication methods
 - Passwords, MFA
- Signatures have been used as form of authentication
 - Used in ballots, checks, legally binding papers
- Current signature verification methods are not reliable
 - Extremely manual and expensive undertaking
 - Observed utility of their expertise over novices are not entirely confirmed
- Handwriting and signatures is unique to each individual person
- Non-invasive, user-friendly and can be readily integrated into current system

BALLOT

Frank D. Conklin

VOTER FILE

Frank D. Conklin

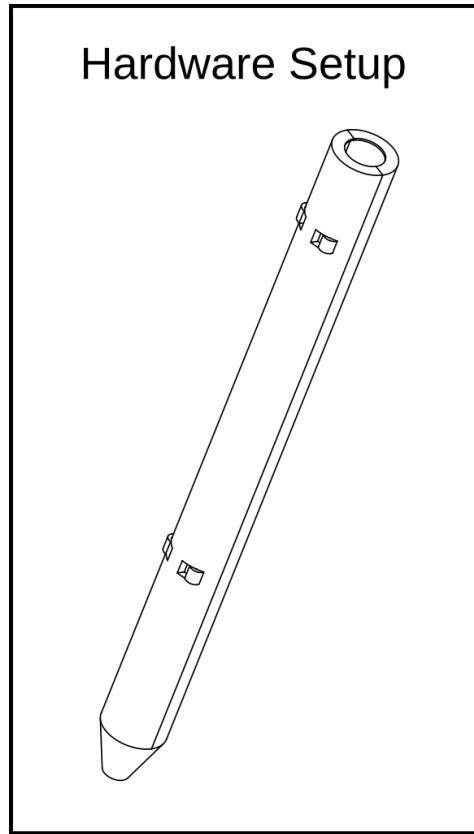
Henry W. Hollings

Henry W. Hollings

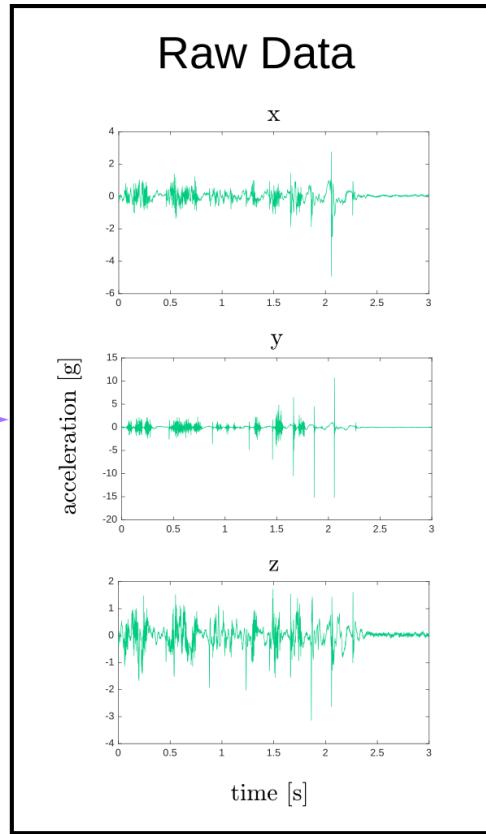
RESEARCH GOALS

- Design and develop a low-cost pen that authenticates users via signature
- Propose a novel approach to use signature as biometric authentication
 - Observe how the signature was written rather than just the outcome
 - This iteration of the device is based on inertial measurements collected by two accelerometers
- Extract features based on collected data
- Train a model using the features that can authenticate a signature

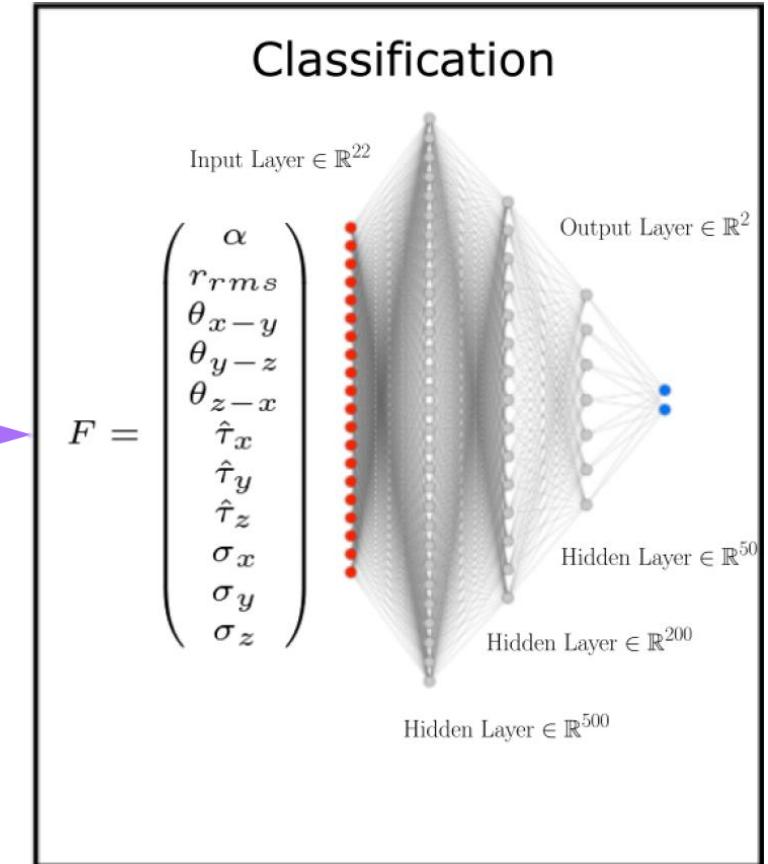
WORKFLOW



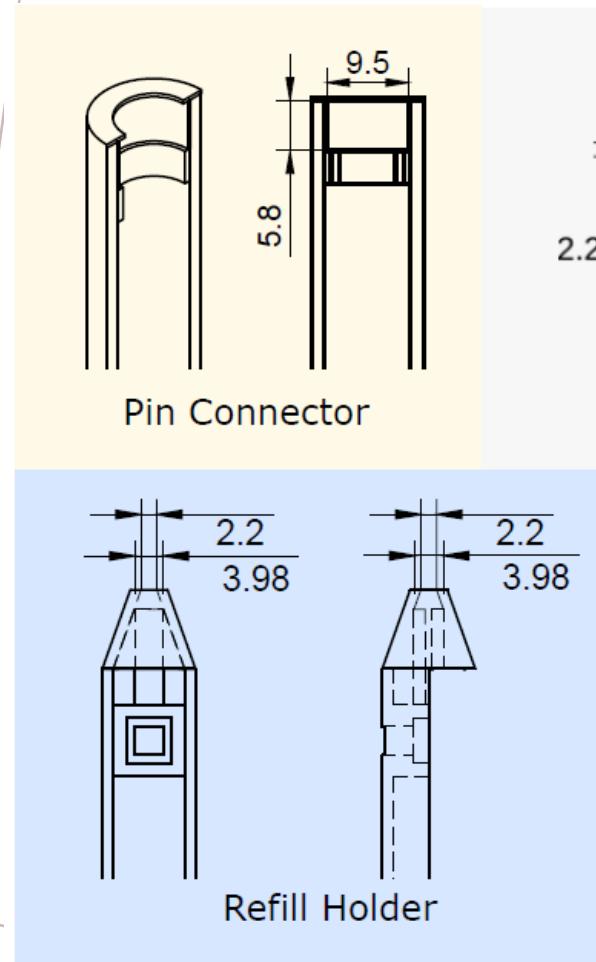
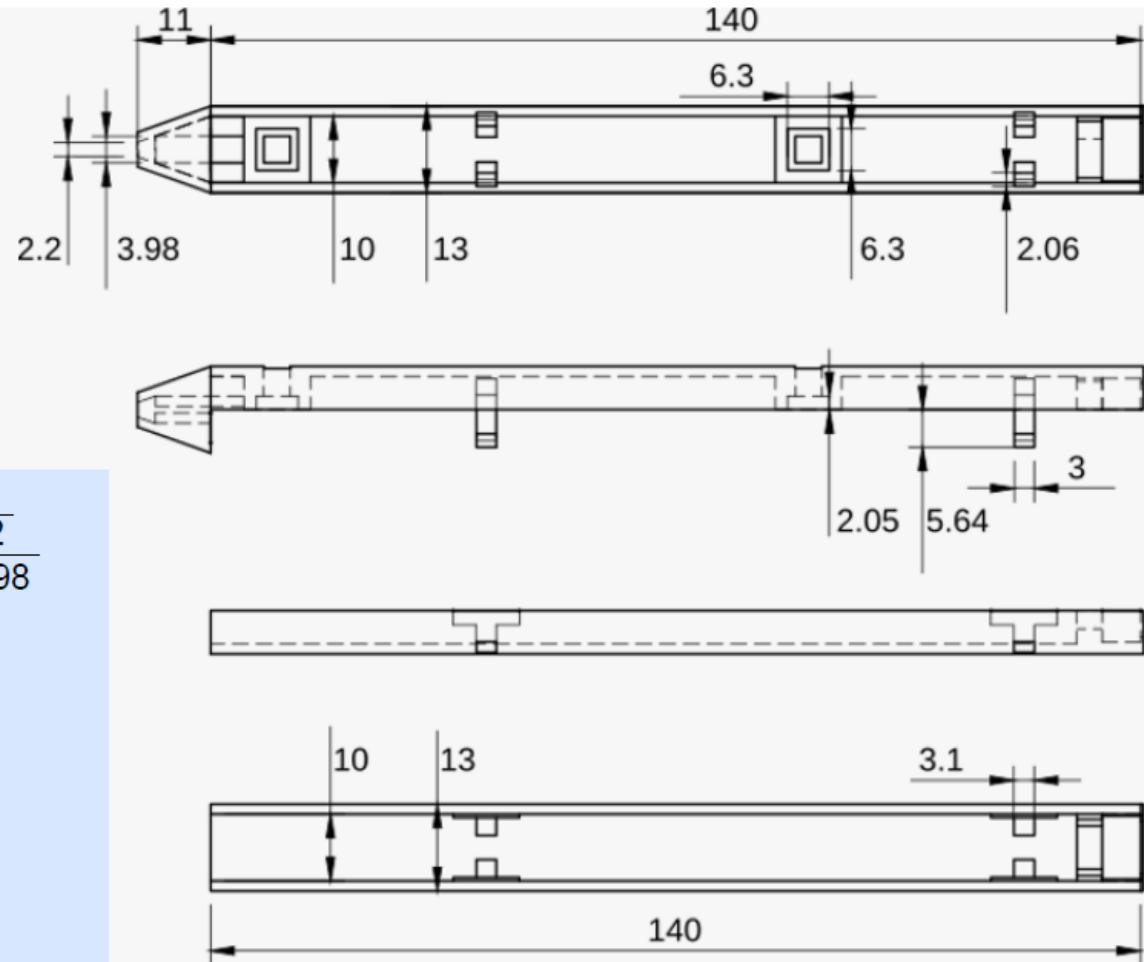
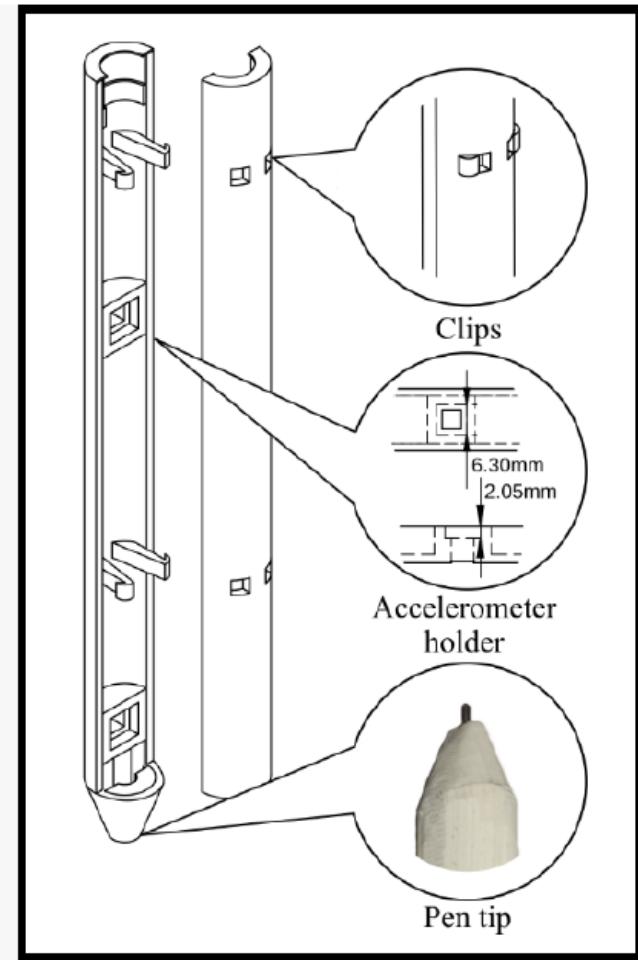
Data
Acquisition

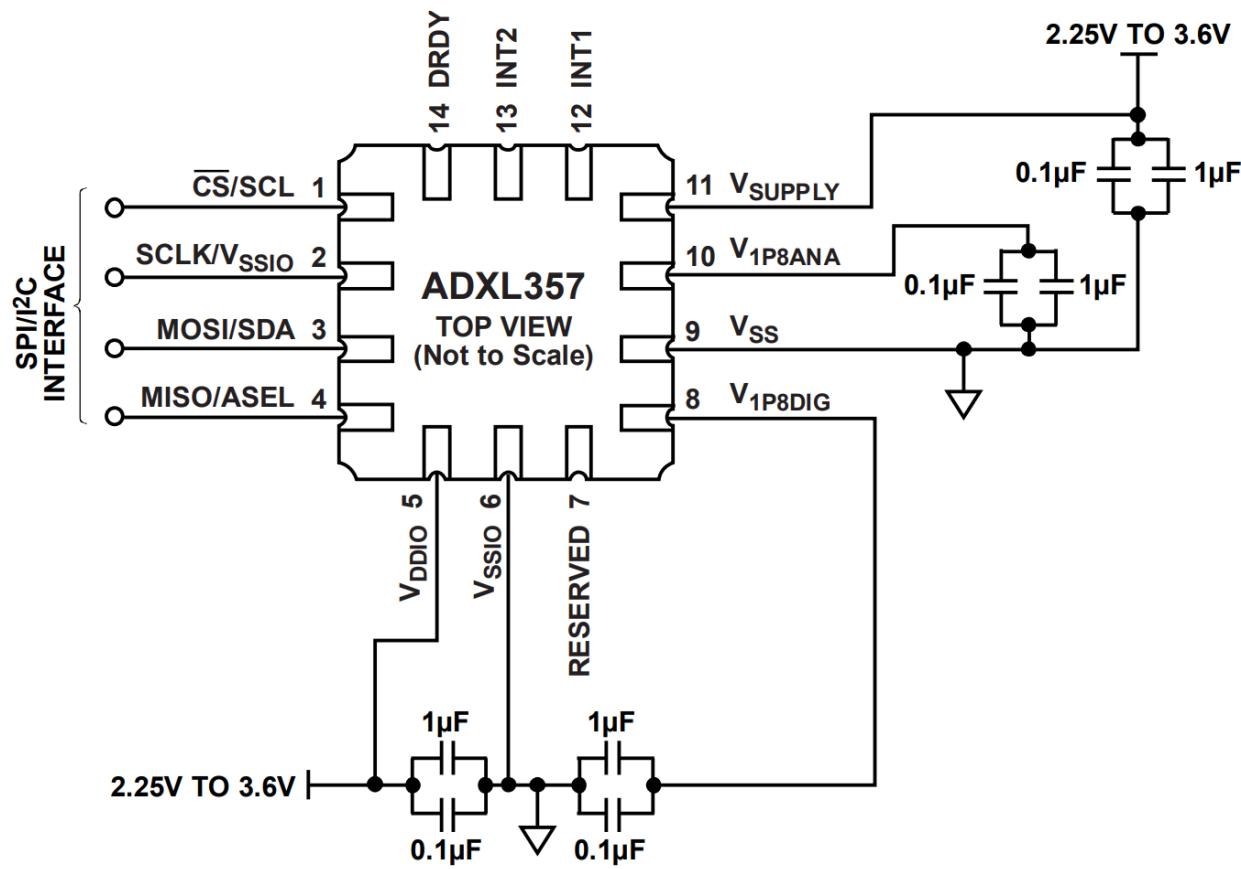


Feature
Extraction



STYLUS DESIGN



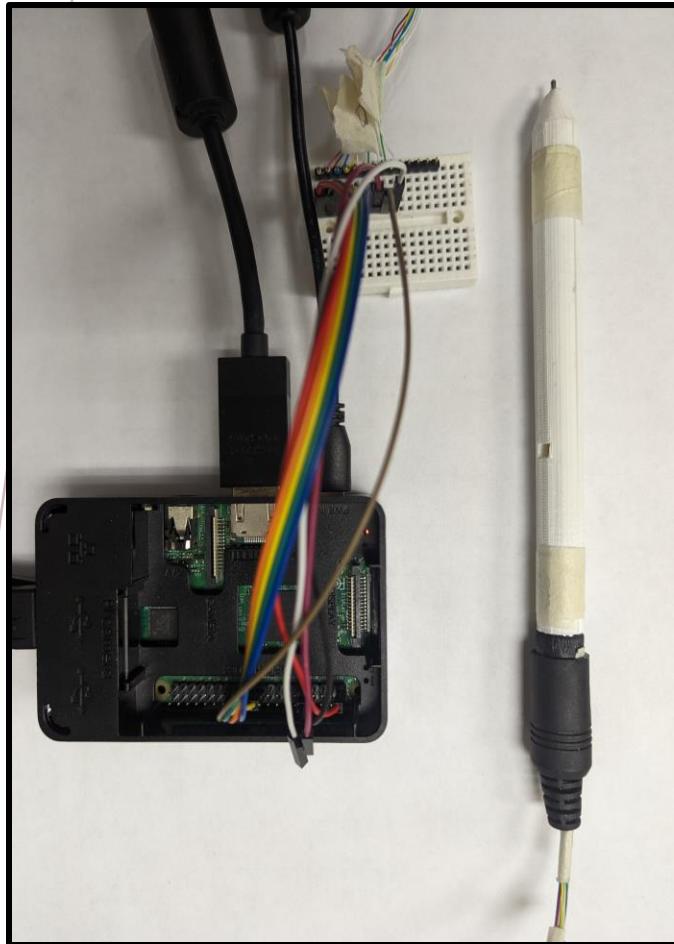


Circuit layout for one ADXL357

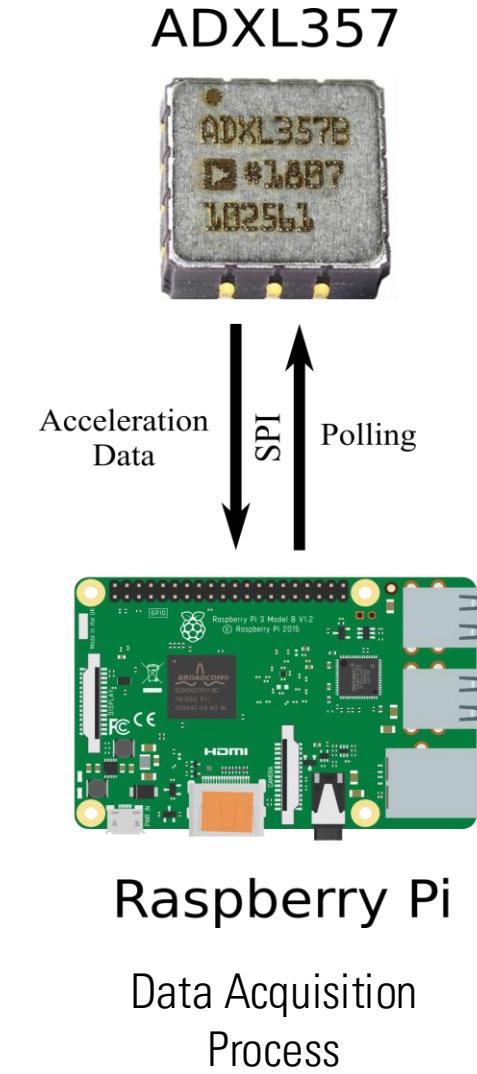
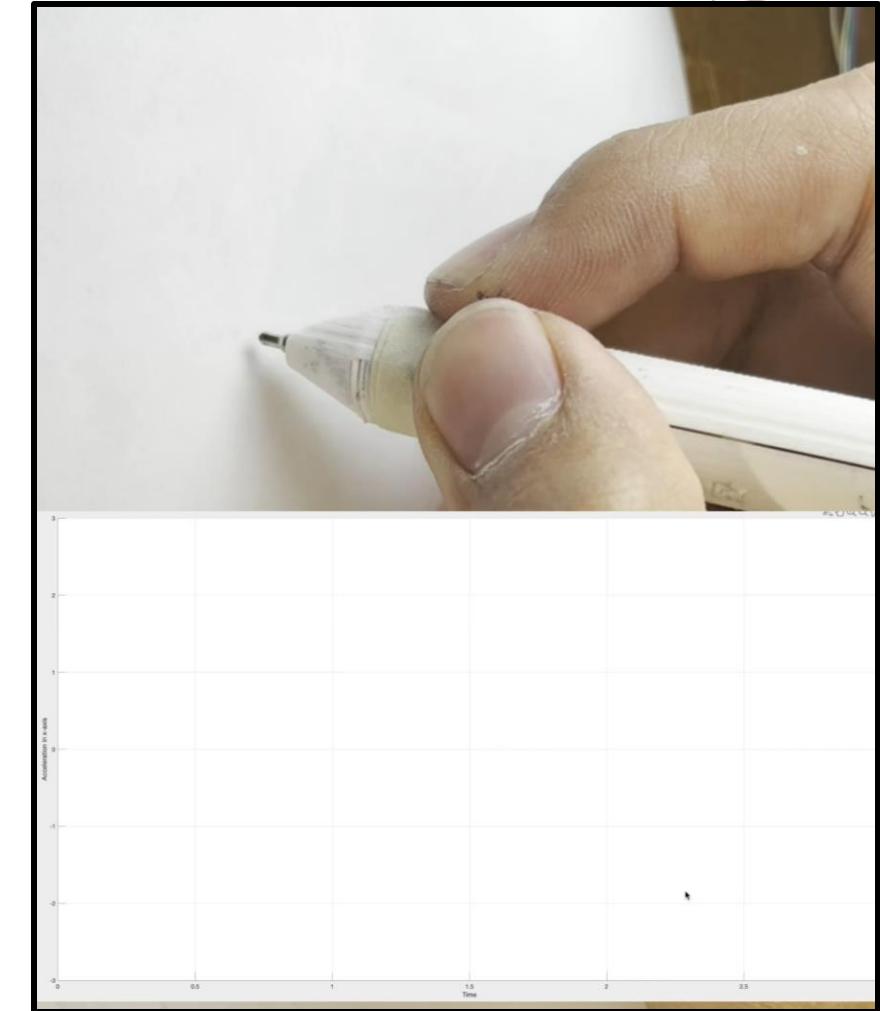
ACCELEROMETER

ADXL357

- 3 Axes measurement
- Bandwidth: 2 kHz
- Range: 20g
- Sensitivity: $7.23 * 10^{-4}$ g
- Serial Peripheral Interface (3.4 MHz)



Physical realization of the pen



Collection of acceleration data from signature

DATA COLLECTION

Two separate users' signatures served as authentication targets: **Subject 0** and **Subject 1**

Two signature labels were collected:
Authentic and **Forged**

Authentic Signature [2 Subjects]

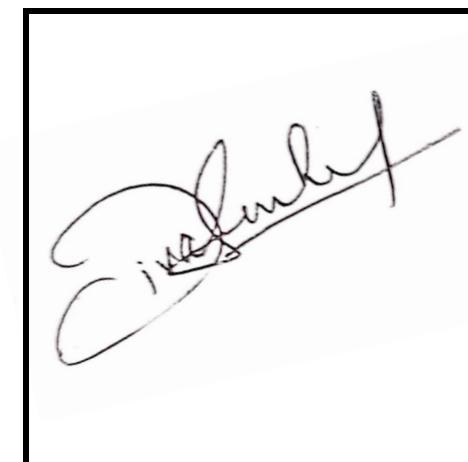
- 212 signatures

Forged Signature [8 Subjects]:

- 30 forged signatures
- 15 random words/scribbles

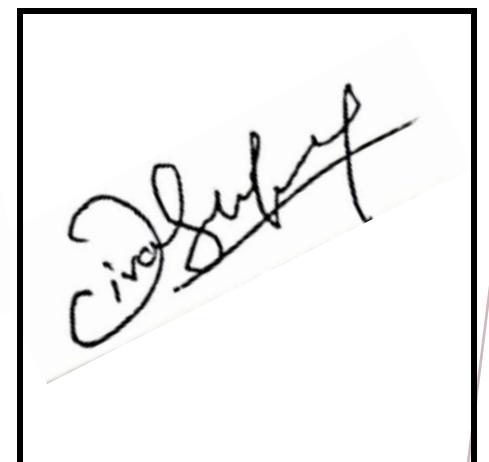
Subject 0

Subject 1



Authentic

Forged



DATA COLLECTION

Signature of Subject: 06
Signature by Subject: 06

06

06	06	Defer
06	06	Fibre
06	06	Coast
06	06	Gond
06	06	Sperm
06	06	Gawze
06	06	Musly
06	06	Bery
06	06	Snore
06	06	Prame
06	06	Rhine
06	06	Bothy
06	06	Clasp
06	06	Haly
06	06	Toss

The subjects were all right-handed and between the ages of 18 and 23 years old

A brief introduction to the forgery task included:

- an introduction to the embedded device
- a description of the time duration:
 - under 3 seconds for Subject 0
 - under 5 seconds for Subject 1
- for each signature class, a copy (to scale) of the authentic signature graphical output
- time for the forger to practice with the pen to forge the target signature (20 minutes or whenever satisfied)

DATA COLLECTION

For both Subject 0 and Subject 1 signatures, a database is collected that includes acceleration time series for:

1. 212 handwritten positive (authentic) signatures;
2. 343 handwritten negative (forged) signatures, consisting of:
 - 238 forged replicas of authentic signature;
 - 105 random words/scribbles.

Each type of signature thus includes a total of 555 collected samples as a dataset

ORIENTATION NORMALIZATION

$$v = -\frac{\hat{a}_{\perp g}}{\|\hat{a}_{\perp g}\|}$$

$$G = \begin{bmatrix} \hat{a} \cdot g & -\|\hat{a} \times g\| & 0 \\ \|\hat{a} \times g\| & \hat{a} \cdot g & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$F = [\hat{a} \quad v \quad g \times \hat{a}]$$

$$U = F \cdot G \cdot F^{-1}$$

FEATURES

$$\alpha = \arccos(\hat{a} \cdot g)$$

$$r_{rms} = \sqrt{\frac{1}{N} \sum_t a_x^2(t) + a_y^2(t) + a_z^2(t)}$$

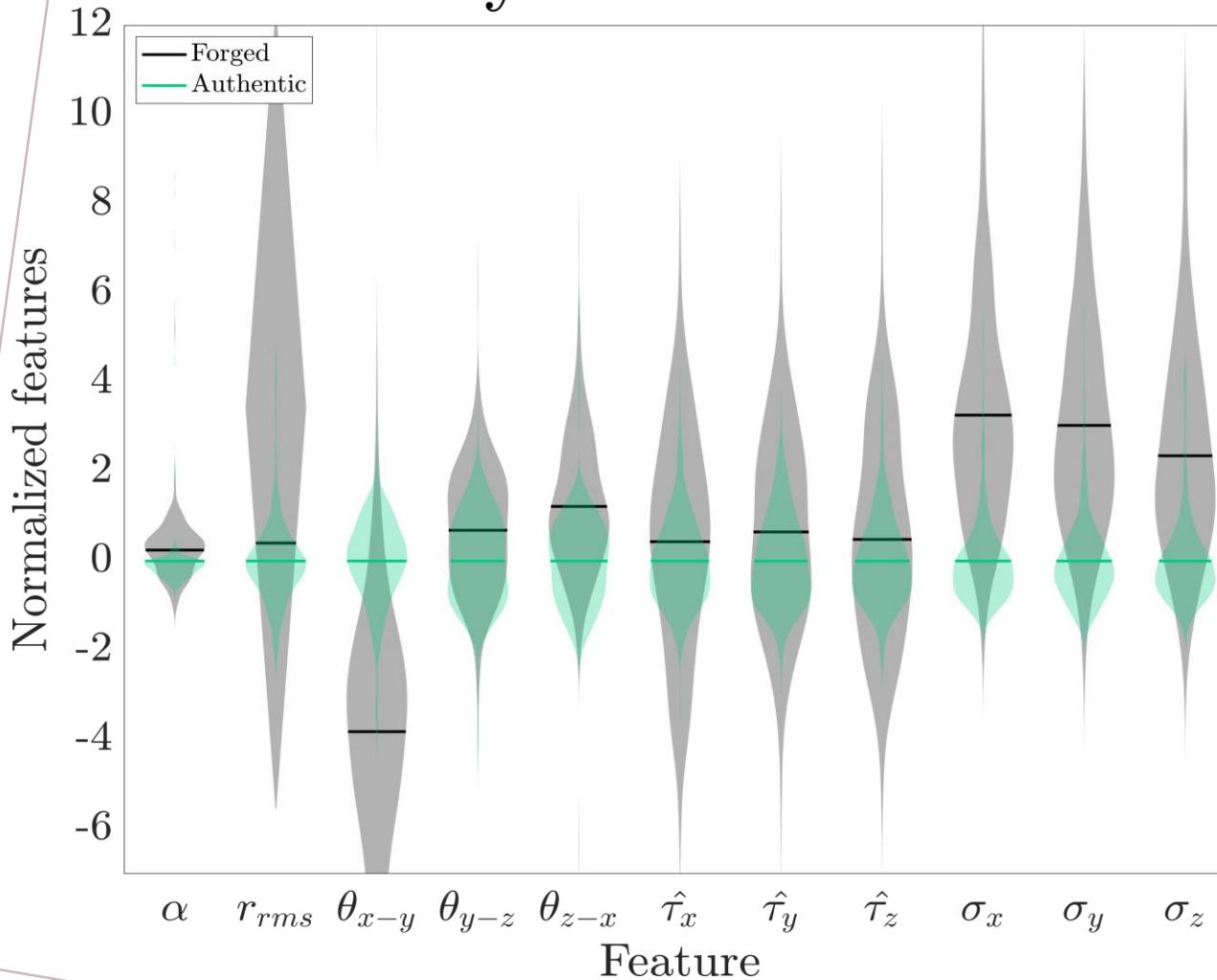
$$\theta_{i-j} = \arctan\left(\frac{a_{i_{rms}}}{a_{j_{rms}}}\right)$$

$$\hat{\tau}_i = \frac{1}{N_\tau} \sum_t E_i(t)t$$

$$\sigma_i = \frac{1}{N_\tau} \sum_t E_i(t)t^2 - \hat{\tau}_i$$

$$N_\tau = \sum_t E_i(t)$$
$$E_i(t) = a_i^2(t)$$

Manually Selected Features



- α : Angle between gravity and tilt of pen
 r_{rms} : Measure of energy put into signature
 θ_{i-j} : Ratio of energy distribution on axes i & j
 $\hat{\tau}_i$: Metric of temporal distribution of energy (Mean)
 σ_i : Metric of temporal distribution of energy (Std)

CLASSIFICATION

A Multilayer Perceptron Neural Network was trained with manually selected features

Input: 22 manually crafted features in F

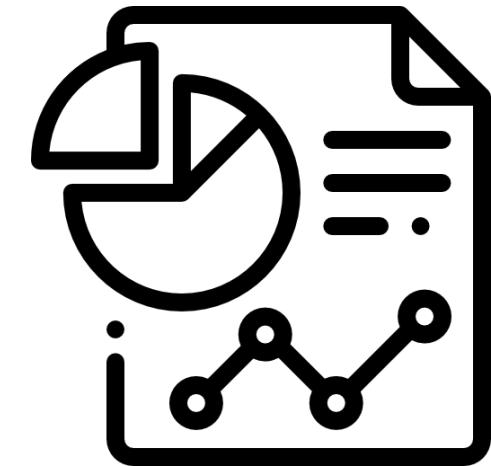
Structure: Three hidden layer with 500, 200, and 50 perceptrons in each layer respectively

Optimization: This model optimized the log-loss function using Limited-memory Broyden– Fletcher–Goldfarb–Shanno (LBFGS)

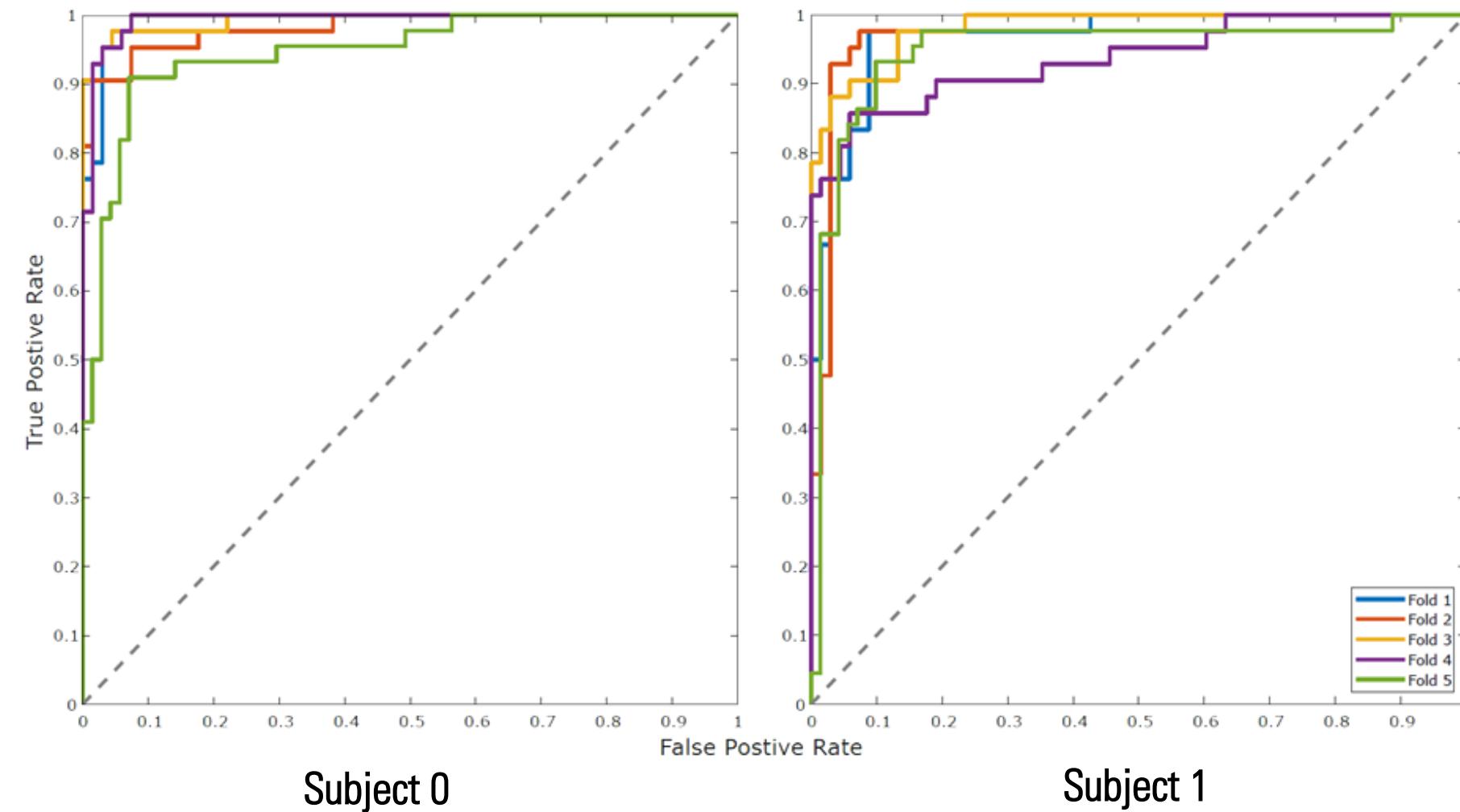
Training: An 80-20 split was heuristically determined

Each dataset was split into 5 distinct folds with uniform distribution of authentic and forged signatures

RESULTS



Receiver Operating Characteristic



AUC

Fold	Subject 0	Subject 1
1	0.9919	0.9678
2	0.9818	0.9758
3	0.9926	0.9814
4	0.9930	0.9373
5	0.9465	0.9481

		Target Class	
		0	1
Predicted Class	0	True Negatives	False Negatives
	1	328	21
Predicted Class	1	59.1%	3.8%
	0	False Positives	True Positives
Subject 0	1	15	191
	0	2.7%	34.4%
Precision: 92.7% (7.3%) Recall: 90.1% (9.9%) NPV: 93.9% (6.1%) Specificity: 95.6% (4.4%) Accuracy: 93.5% (6.5%)			

		Target Class	
		0	1
Predicted Class	0	True Negatives	False Negatives
	1	323	19
Predicted Class	1	58.2%	3.4%
	0	False Positives	True Positives
Subject 1	1	20	193
	0	3.6%	34.8%
Precision: 90.6% (9.4%) Recall: 91.0% (9.0%) NPV: 94.4% (5.6%) Specificity: 94.2% (5.8%) Accuracy: 93.0% (7.0%)			

FUTURE WORKS

Addition of more sensors like pressure sensor and gyrometer

Exploration of other feature extraction and training techniques

Explore on possibility of text transcription with this device

Expanding the study to have more signature as authentication target

THANK YOU

Thank you for your attention. The authors would like to thank the AIM 2023 organizing committee and welcome all questions via email at
kevin.huang@trincoll.edu

This work was done as an extension to the Senior Engineering Capstone Project 2022. We would like to acknowledge Trinity College and Travelers Insurance for funding the project and making this research possible. We would also like to thank Dr Clayton Buyers for his support.

QUESTIONS

ollect.

Einzelheit

olit.

Individ



FEATURE DIFFERENCE BETWEEN SQUARES AND CIRCLES

