### **Contact Localization via Active Oscillatory Actuation**

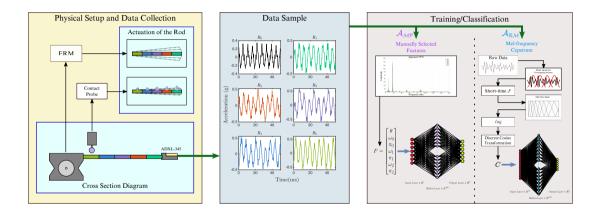
#### Divas Subedi<sup>1</sup>, Elizabeth Schoemer<sup>1</sup>, Digesh Chitrakar<sup>1</sup>, Yun-Hsuan Su<sup>2</sup>, and Kevin Huang<sup>1</sup>

<sup>1</sup>Trinity College, Department of Engineering, 300 Summit St, Hartford, CT 06106 <sup>2</sup>Mount Holyoke College, Department of Computer Science, 50 College St, South Hadley, MA 01075

2022 IEEE/SICE International Symposium on System Integration Narvik, Norway

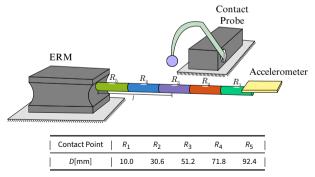
January 9-12, 2022




# Introduction

Motivation for this study:

- Contact localization in robotics.
  - Grasping, manipulation
  - Telelocomotion
  - Medical robotics
- Current technologies are expensive.
  - Piezoelectric
  - Serial links
- Seek non-intrusive and readily implemented alternative.
  - Accelerometers are inexpensive and non-intrusive.

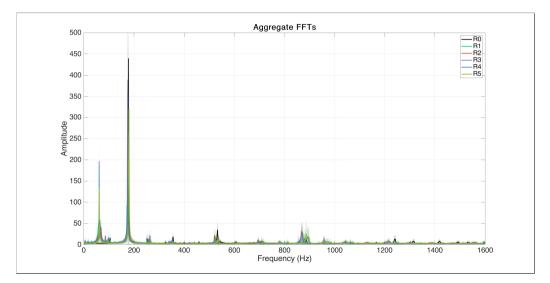



### Procedure



#### Procedure Hardware Setup

The hardware setup consists of a rigid link, contact probe, ERM, and an accelerometer. The ERM actively actuates the rigid link, while contacts are made at appropriate locations between  $R_1 - R_5$ ,  $R_0$  is untouched. Inertial data is collected via the IMU.




#### Procedure Data Collection

- ▶ The contact probe and the ERM actuator were automated using a Raspberry Pi.
- The ERM was actuated for one second with no load and constant current.
- Accelerometer measured, at 3200 Hz, the 3-axis acceleration.
- ▶ The setup is reset and allowed to rest for 180 seconds.
- 150 samples were collected for each section to form an aggregate database of 900 one-second time series.



# **Manual Features**

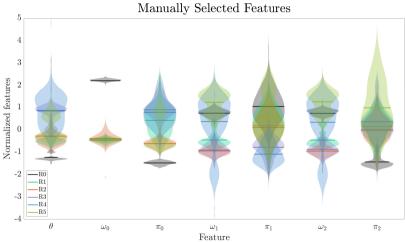


#### **Manual Features**

$$F = \begin{bmatrix} \theta & \omega_0 & \pi_0 & \omega_1 & \pi_1 & \omega_2 & \pi_2 \end{bmatrix}^T$$

Feature space constructed from seven measures

- $\theta$  : atan2 of ratio of RMS vertical and horizontal acceleration
- $\blacktriangleright \omega_i$  : peak frequency within band *i*
- $\pi_i$  : peak prominence within band *i*


Bands were empirically defined from the Aggregate FFT.

Band 0: [0, 120] Hz Band 1: [500-550] Hz

Band 2: [825-925] Hz

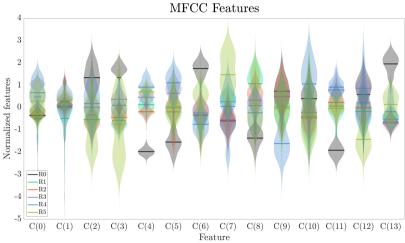
(1)

# Manual Feature Space



#### **MFCC** Features

$$X(k) = \mathcal{F}\{x(n)\}$$
<sup>(2)</sup>

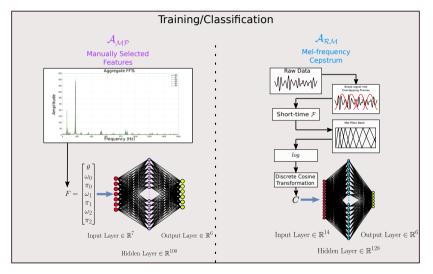

$$f_{mel} = 2595 \log_{10} \left( 1 + \frac{f}{700} \right)$$
(3)

$$s(m) = \sum_{k=0}^{N-1} \left[ |X(k)|^2 H_m(k) \right]; \quad 0 < m < M-1$$
(4)

$$C(n) = \sum_{m=0}^{M-1} \log_{10}(s(m)) \cos\left(\frac{\pi n(m-0.5)}{M}\right)$$
(5)

The first 14 coefficients constitute the  $A_{RM}$  feature space, i.e.  $0 \le n \le 13$  in (5).

#### **MFCC Feature Space**




# **Classification Algorithms**

Two contact localization algorithms were proposed in this work:


- A<sub>MP</sub>: Multiclass Perceptron with manually selected features, F
   Input: Seven manually selected features in F
   Structure: A single layer of 100 perceptrons
   Optimization: Scaled conjugate gradient backpropogation to optimize cross entropy
- A<sub>RM</sub>: Recurrent Neural Network with Mel-frequency cepstrum features C. Input: Sequences of 98 C feature vectors per sample Structure: Bidirectional LSTM recurrent neural network with 128 hidden units Activation: Sigmoid gate activation and hyperbolic tangent state activation

# **Classification Algorithms**

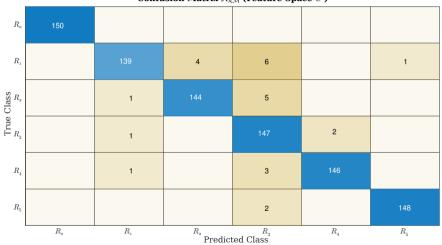




# Classification with $\mathcal{A}_{\mathcal{MP}}$



Confusion Matrix  $\mathcal{A}_{\mathcal{MP}}$  (Feature Space  $\mathit{F}$  )


# Classification with $\mathcal{A}_{\mathcal{MP}}$

**Table 1:** Multi-class Perceptron Classifier ( $A_{MP}$ ) Performance

| Class          | Precision | Recall | Accuracy | F1-score |
|----------------|-----------|--------|----------|----------|
| $R_0$          | 1.0       | 1.0    | 1.0      | 1.0      |
| $R_1$          | 0.9071    | 0.8467 | 0.9600   | 0.8759   |
| $R_2$          | 0.9130    | 0.9800 | 0.9811   | 0.9453   |
| R <sub>3</sub> | 0.9338    | 0.9400 | 0.9789   | 0.9369   |
| $R_4$          | 0.9867    | 0.9867 | 0.9956   | 0.9867   |
| $R_5$          | 0.9932    | 0.9800 | 0.9956   | 0.9866   |

Overall accuracy : 95.56%

# Classification with $\mathcal{A_{RM}}$



Confusion Matrix  $\mathcal{A}_{\mathcal{RM}}$  (Feature Space C )

# Classification with $\mathcal{A}_{\mathcal{R}\mathcal{M}}$

#### **Table 2:** Bi-LTSM Classifier ( $A_{RM}$ ) Performance

| Class          | Precision | Recall | Accuracy | F1-score |
|----------------|-----------|--------|----------|----------|
| R <sub>0</sub> | 1.0       | 1.0    | 1.0      | 1.0      |
| $R_1$          | 0.9789    | 0.9267 | 0.9844   | 0.9521   |
| $R_2$          | 0.9730    | 0.9600 | 0.9889   | 0.9664   |
| R <sub>3</sub> | 0.9018    | 0.9800 | 0.9789   | 0.9393   |
| $R_4$          | 0.9865    | 0.9733 | 0.9933   | 0.9799   |
| $R_5$          | 0.9933    | 0.9867 | 0.9967   | 0.9900   |

Overall accuracy : 97.11%



# Summary

Designed, constructed and evaluated a repeatable active contact localization mechanism

- Actuate oscillations on physical link
- Contact link in separate regions (R<sub>0</sub> R<sub>5</sub>)
- Measure frequency response
- Classify response to contact region using two different models
- We observe:
  - Ease of contact sensing
  - In general, further section from the actuator are harder to identify

# **Future Work**

- Actuation Modality
- MFCC features can be tuned to task
- Expansion of data set in multiple dimensions
- Implementation of asymmetric rigid link
- Acoustic Contact Sensing



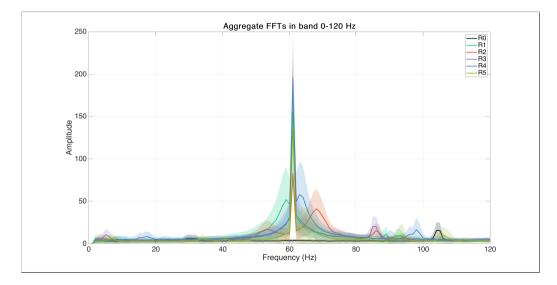
# Thank you!

Thank you for your attention. The authors would like to thank the SII 2022 organizing committee and welcome all questions via email at divas.subedi@trincoll.edu.

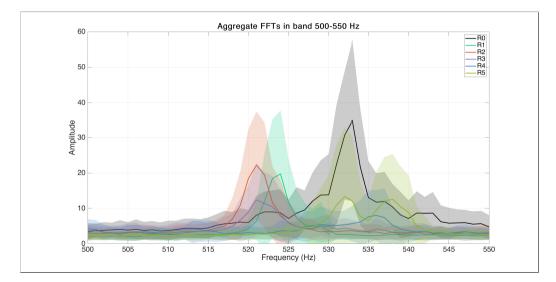


This work was supported by the Trinity College Summer Research Program. The authors would like to thank Kirkland Boyd from The University of Colorado Boulder for machining help, Andrew Pace from The University of Washington for technical guidance and Denisse Olmedo from Trinity College for feedback and support.

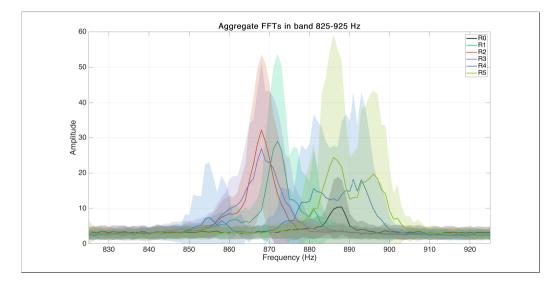



# Hardware Setup Implementation

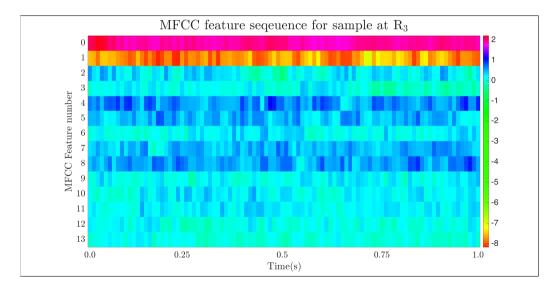
The physical setup is realized using:


- 1/4 inch Zinc Coated Steel Rod
- Secured with PLA mounts
  - ADXL 3-axis accelerometer
  - Eccentric Rotating Mass
  - MG995 metal gear servo




### Band0




### Band1



### Band2



# MFCC feature for a sample

